Skip to content

npxpy.nodes.aligners.InterfaceAligner

Bases: Node

A class representing an interface aligner node, responsible for managing alignment settings and grid patterns for various operations.

Attributes:

Name Type Description
alignment_anchors List[Dict]

Stores the measurement locations (or interface anchors) for interface alignment.

count List[int]

The number of grid points in [x, y] direction.

size List[float]

The size of the grid in [width, height].

pattern str

The pattern used for grid or custom alignment.

Source code in npxpy/nodes/aligners.py
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
class InterfaceAligner(Node):
    """
    A class representing an interface aligner node, responsible for managing
    alignment settings and grid patterns for various operations.

    Attributes:
        alignment_anchors (List[Dict]): Stores the measurement locations (or interface anchors) for interface alignment.
        count (List[int]): The number of grid points in [x, y] direction.
        size (List[float]): The size of the grid in [width, height].
        pattern (str): The pattern used for grid or custom alignment.
    """

    def __init__(
        self,
        name: str = "Interface aligner",
        signal_type: str = "auto",
        detector_type: str = "auto",
        measure_tilt: bool = False,
        area_measurement: bool = False,
        center_stage: bool = True,
        action_upon_failure: str = "abort",
        laser_power: float = 0.5,
        scan_area_res_factors: List[float] = [1.0, 1.0],
        scan_z_sample_distance: float = 0.1,
        scan_z_sample_count: int = 51,
    ):
        """
        Initializes an InterfaceAligner node with specified settings.

        Parameters:
            name (str): Name of the interface aligner. Defaults to "Interface aligner".
            signal_type (str): The type of signal. Can be 'auto', 'fluorescence', or 'reflection'. Defaults to 'auto'.
            detector_type (str): The type of detector. Can be 'auto', 'confocal', 'camera', or 'camera_legacy'. Defaults to 'auto'.
            measure_tilt (bool): Whether to measure tilt. Defaults to False.
            area_measurement (bool): Whether to measure the area. Defaults to False.
            center_stage (bool): Whether to center the stage. Defaults to True.
            action_upon_failure (str): Action upon failure, can be 'abort' or 'ignore'. Defaults to 'abort'.
            laser_power (float): The power of the laser. Must be a positive number. Defaults to 0.5.
            scan_area_res_factors (List[float]): Resolution factors for the scan area. Defaults to [1.0, 1.0].
            scan_z_sample_distance (float): Distance between samples in the z-direction. Defaults to 0.1.
            scan_z_sample_count (int): Number of samples in the z-direction. Must be greater than 0. Defaults to 51.

        Raises:
            ValueError: If any input is not valid (e.g., invalid types or constraints like negative values).
        """
        super().__init__("interface_alignment", name)

        # Use setters for validation
        self.signal_type = signal_type
        self.detector_type = detector_type
        self.measure_tilt = measure_tilt
        self.area_measurement = area_measurement
        self.center_stage = center_stage
        self.action_upon_failure = action_upon_failure
        self.laser_power = laser_power
        self.scan_area_res_factors = scan_area_res_factors
        self.scan_z_sample_distance = scan_z_sample_distance
        self.scan_z_sample_count = scan_z_sample_count

        self.alignment_anchors = []
        self.count = [5, 5]
        self.size = [200.0, 200.0]
        self.pattern = "Origin"

    # Setters with validation for various attributes

    @property
    def signal_type(self):
        return self._signal_type

    @signal_type.setter
    def signal_type(self, value: str):
        valid_types = ["auto", "fluorescence", "reflection"]
        if value not in valid_types:
            raise ValueError(f"signal_type must be one of {valid_types}.")
        self._signal_type = value

    @property
    def detector_type(self):
        return self._detector_type

    @detector_type.setter
    def detector_type(self, value: str):
        valid_detectors = ["auto", "confocal", "camera", "camera_legacy"]
        if value not in valid_detectors:
            raise ValueError(
                f"detector_type must be one of {valid_detectors}."
            )
        self._detector_type = value

    @property
    def measure_tilt(self):
        return self._measure_tilt

    @measure_tilt.setter
    def measure_tilt(self, value: bool):
        if not isinstance(value, bool):
            raise TypeError("measure_tilt must be a boolean.")
        self._measure_tilt = value

    @property
    def area_measurement(self):
        return self._area_measurement

    @area_measurement.setter
    def area_measurement(self, value: bool):
        if not isinstance(value, bool):
            raise TypeError("area_measurement must be a boolean.")
        self._area_measurement = value

    @property
    def center_stage(self):
        return self._center_stage

    @center_stage.setter
    def center_stage(self, value: bool):
        if not isinstance(value, bool):
            raise TypeError("center_stage must be a boolean.")
        self._center_stage = value

    @property
    def action_upon_failure(self):
        return self._action_upon_failure

    @action_upon_failure.setter
    def action_upon_failure(self, value: str):
        valid_actions = ["abort", "ignore"]
        if value not in valid_actions:
            raise ValueError(
                f"action_upon_failure must be one of {valid_actions}."
            )
        self._action_upon_failure = value

    @property
    def laser_power(self):
        return self._laser_power

    @laser_power.setter
    def laser_power(self, value: float):
        if not isinstance(value, (float, int)) or value <= 0:
            raise ValueError("laser_power must be a positive number.")
        self._laser_power = value

    @property
    def scan_area_res_factors(self):
        return self._scan_area_res_factors

    @scan_area_res_factors.setter
    def scan_area_res_factors(self, value: List[float]):
        if len(value) != 2 or not all(
            isinstance(f, (float, int)) for f in value
        ):
            raise TypeError(
                "scan_area_res_factors must be a list of two floats or ints."
            )
        self._scan_area_res_factors = value

    @property
    def scan_z_sample_distance(self):
        return self._scan_z_sample_distance

    @scan_z_sample_distance.setter
    def scan_z_sample_distance(self, value: float):
        if not isinstance(value, (float, int)):
            raise TypeError(
                "scan_z_sample_distance must be a float or an int."
            )
        self._scan_z_sample_distance = value

    @property
    def scan_z_sample_count(self):
        return self._scan_z_sample_count

    @scan_z_sample_count.setter
    def scan_z_sample_count(self, value: int):
        if not isinstance(value, int) or value < 1:
            raise ValueError(
                "scan_z_sample_count must be an integer greater than 0."
            )
        self._scan_z_sample_count = value

    @property
    def count(self):
        return self._count

    @count.setter
    def count(self, value: List[int]):
        if len(value) != 2 or not all(isinstance(c, int) for c in value):
            raise ValueError("count must be a list of two integers.")
        self._count = value

    @property
    def size(self):
        return self._size

    @size.setter
    def size(self, value: List[float]):
        if len(value) != 2 or not all(
            isinstance(s, (float, int)) for s in value
        ):
            raise ValueError("size must be a list of two numbers.")
        self._size = value

    @property
    def pattern(self):
        return self._pattern

    @pattern.setter
    def pattern(self, value: str):
        if value not in ["Grid", "Custom", "Origin"]:
            raise ValueError("pattern must be 'Grid', 'Custom', or 'Origin'.")
        self._pattern = value

    def set_grid(self, count: List[int], size: List[float]):
        """
        Sets the grid point count and grid size for alignment operations.

        Parameters:
            count (List[int]): Number of grid points in [x, y] direction. Must contain exactly two integers.
            size (List[float]): Size of the grid in [width, height]. Must contain exactly two numbers.

        Returns:
            self: The instance of the InterfaceAligner class.

        Raises:
            ValueError: If count or size does not contain exactly two elements.
            TypeError: If elements in count or size are not numbers.
        """
        self.count = count
        self.size = size
        self.pattern = "Grid"
        return self

    def add_interface_anchor(
        self,
        position: List[float],
        label: str,
        scan_area_size: List[float] = None,
    ):
        """
        Adds a custom interface anchor with a label, position, and optional scan area size.

        Parameters:
            label (str): The label for the anchor. Must be a string.
            position (List[float]): The position of the anchor [x, y]. Must contain exactly two numbers.
            scan_area_size (List[float], optional): The scan area size [width, height]. Defaults to [10.0, 10.0].

        Raises:
            ValueError: If position does not contain exactly two elements.
            TypeError: If label is not a string or elements in position or scan_area_size are not numbers.
        """
        if not isinstance(position, list) or len(position) != 2:
            try:
                position = list(position)
                position = position[:2]
                assert len(position) == 2
            except:
                raise ValueError("position must be a list of two elements.")
        if not all(isinstance(p, (float, int)) for p in position):
            try:
                position = [float(p) for p in position]
            except:
                raise TypeError("All position elements must be numbers.")
        if scan_area_size is None:
            scan_area_size = [10.0, 10.0]

        self.pattern = "Custom"
        self.alignment_anchors.append(
            {
                "label": label,
                "position": position,
                "scan_area_size": scan_area_size,
            }
        )
        return self

    def set_interface_anchors_at(
        self,
        positions: List[List[float]],
        labels: List[str] = None,
        scan_area_sizes: List[List[float]] = None,
    ):
        """
        Creates multiple custom interface anchors at specified positions.

        Parameters:
            labels (List[str]): List of labels for the measurement locations.
            positions (List[List[float]]): List of positions for the measurement locations, each position is [x, y].
            scan_area_sizes (List[List[float]], optional): List of scan area sizes for the measurement locations,
                                                           each scan area size is [width, height]. Defaults to [10.0, 10.0]
                                                           for each anchor.

        Returns:
            self: The instance of the InterfaceAligner class.

        Raises:
            ValueError: If the number of labels does not match the number of positions.
            TypeError: If elements in labels, positions, or scan_area_sizes are not of the correct types.
        """
        if scan_area_sizes is None:
            scan_area_sizes = [[10.0, 10.0]] * len(positions)
        if labels is None:
            labels = [f"anchor_{i}" for i in range(len(positions))]
        for label, position, scan_area_size in zip(
            labels, positions, scan_area_sizes
        ):
            self.add_interface_anchor(position, label, scan_area_size)

        return self

    def to_dict(self) -> Dict:
        """
        Converts the current state of the object into a dictionary representation.

        Returns:
            dict: Dictionary representation of the current state of the object, including
                  alignment anchors, grid settings, and signal properties.
        """
        node_dict = super().to_dict()
        if self.signal_type == "auto" or self.detector_type == "camera_legacy":
            node_dict["interface_finder_type"] = self.signal_type
        else:
            node_dict["interface_finder_type"] = (
                f"{self.signal_type}_{self.detector_type}"
            )
        node_dict["properties"] = {
            "signal_type": self.signal_type,
            "detector_type": self.detector_type,
        }
        node_dict["alignment_anchors"] = self.alignment_anchors
        node_dict["grid_point_count"] = self.count
        node_dict["grid_size"] = self.size
        node_dict["pattern"] = self.pattern
        node_dict["measure_tilt"] = self.measure_tilt
        node_dict["area_measurement"] = self.area_measurement
        node_dict["center_stage"] = self.center_stage
        node_dict["action_upon_failure"] = self.action_upon_failure
        node_dict["laser_power"] = self.laser_power
        node_dict["scan_area_res_factors"] = self.scan_area_res_factors
        node_dict["scan_z_sample_distance"] = self.scan_z_sample_distance
        node_dict["scan_z_sample_count"] = self.scan_z_sample_count
        return node_dict

__init__(name='Interface aligner', signal_type='auto', detector_type='auto', measure_tilt=False, area_measurement=False, center_stage=True, action_upon_failure='abort', laser_power=0.5, scan_area_res_factors=[1.0, 1.0], scan_z_sample_distance=0.1, scan_z_sample_count=51)

Initializes an InterfaceAligner node with specified settings.

Parameters:

Name Type Description Default
name str

Name of the interface aligner. Defaults to "Interface aligner".

'Interface aligner'
signal_type str

The type of signal. Can be 'auto', 'fluorescence', or 'reflection'. Defaults to 'auto'.

'auto'
detector_type str

The type of detector. Can be 'auto', 'confocal', 'camera', or 'camera_legacy'. Defaults to 'auto'.

'auto'
measure_tilt bool

Whether to measure tilt. Defaults to False.

False
area_measurement bool

Whether to measure the area. Defaults to False.

False
center_stage bool

Whether to center the stage. Defaults to True.

True
action_upon_failure str

Action upon failure, can be 'abort' or 'ignore'. Defaults to 'abort'.

'abort'
laser_power float

The power of the laser. Must be a positive number. Defaults to 0.5.

0.5
scan_area_res_factors List[float]

Resolution factors for the scan area. Defaults to [1.0, 1.0].

[1.0, 1.0]
scan_z_sample_distance float

Distance between samples in the z-direction. Defaults to 0.1.

0.1
scan_z_sample_count int

Number of samples in the z-direction. Must be greater than 0. Defaults to 51.

51

Raises:

Type Description
ValueError

If any input is not valid (e.g., invalid types or constraints like negative values).

Source code in npxpy/nodes/aligners.py
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
def __init__(
    self,
    name: str = "Interface aligner",
    signal_type: str = "auto",
    detector_type: str = "auto",
    measure_tilt: bool = False,
    area_measurement: bool = False,
    center_stage: bool = True,
    action_upon_failure: str = "abort",
    laser_power: float = 0.5,
    scan_area_res_factors: List[float] = [1.0, 1.0],
    scan_z_sample_distance: float = 0.1,
    scan_z_sample_count: int = 51,
):
    """
    Initializes an InterfaceAligner node with specified settings.

    Parameters:
        name (str): Name of the interface aligner. Defaults to "Interface aligner".
        signal_type (str): The type of signal. Can be 'auto', 'fluorescence', or 'reflection'. Defaults to 'auto'.
        detector_type (str): The type of detector. Can be 'auto', 'confocal', 'camera', or 'camera_legacy'. Defaults to 'auto'.
        measure_tilt (bool): Whether to measure tilt. Defaults to False.
        area_measurement (bool): Whether to measure the area. Defaults to False.
        center_stage (bool): Whether to center the stage. Defaults to True.
        action_upon_failure (str): Action upon failure, can be 'abort' or 'ignore'. Defaults to 'abort'.
        laser_power (float): The power of the laser. Must be a positive number. Defaults to 0.5.
        scan_area_res_factors (List[float]): Resolution factors for the scan area. Defaults to [1.0, 1.0].
        scan_z_sample_distance (float): Distance between samples in the z-direction. Defaults to 0.1.
        scan_z_sample_count (int): Number of samples in the z-direction. Must be greater than 0. Defaults to 51.

    Raises:
        ValueError: If any input is not valid (e.g., invalid types or constraints like negative values).
    """
    super().__init__("interface_alignment", name)

    # Use setters for validation
    self.signal_type = signal_type
    self.detector_type = detector_type
    self.measure_tilt = measure_tilt
    self.area_measurement = area_measurement
    self.center_stage = center_stage
    self.action_upon_failure = action_upon_failure
    self.laser_power = laser_power
    self.scan_area_res_factors = scan_area_res_factors
    self.scan_z_sample_distance = scan_z_sample_distance
    self.scan_z_sample_count = scan_z_sample_count

    self.alignment_anchors = []
    self.count = [5, 5]
    self.size = [200.0, 200.0]
    self.pattern = "Origin"

add_interface_anchor(position, label, scan_area_size=None)

Adds a custom interface anchor with a label, position, and optional scan area size.

Parameters:

Name Type Description Default
label str

The label for the anchor. Must be a string.

required
position List[float]

The position of the anchor [x, y]. Must contain exactly two numbers.

required
scan_area_size List[float]

The scan area size [width, height]. Defaults to [10.0, 10.0].

None

Raises:

Type Description
ValueError

If position does not contain exactly two elements.

TypeError

If label is not a string or elements in position or scan_area_size are not numbers.

Source code in npxpy/nodes/aligners.py
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
def add_interface_anchor(
    self,
    position: List[float],
    label: str,
    scan_area_size: List[float] = None,
):
    """
    Adds a custom interface anchor with a label, position, and optional scan area size.

    Parameters:
        label (str): The label for the anchor. Must be a string.
        position (List[float]): The position of the anchor [x, y]. Must contain exactly two numbers.
        scan_area_size (List[float], optional): The scan area size [width, height]. Defaults to [10.0, 10.0].

    Raises:
        ValueError: If position does not contain exactly two elements.
        TypeError: If label is not a string or elements in position or scan_area_size are not numbers.
    """
    if not isinstance(position, list) or len(position) != 2:
        try:
            position = list(position)
            position = position[:2]
            assert len(position) == 2
        except:
            raise ValueError("position must be a list of two elements.")
    if not all(isinstance(p, (float, int)) for p in position):
        try:
            position = [float(p) for p in position]
        except:
            raise TypeError("All position elements must be numbers.")
    if scan_area_size is None:
        scan_area_size = [10.0, 10.0]

    self.pattern = "Custom"
    self.alignment_anchors.append(
        {
            "label": label,
            "position": position,
            "scan_area_size": scan_area_size,
        }
    )
    return self

set_grid(count, size)

Sets the grid point count and grid size for alignment operations.

Parameters:

Name Type Description Default
count List[int]

Number of grid points in [x, y] direction. Must contain exactly two integers.

required
size List[float]

Size of the grid in [width, height]. Must contain exactly two numbers.

required

Returns:

Name Type Description
self

The instance of the InterfaceAligner class.

Raises:

Type Description
ValueError

If count or size does not contain exactly two elements.

TypeError

If elements in count or size are not numbers.

Source code in npxpy/nodes/aligners.py
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
def set_grid(self, count: List[int], size: List[float]):
    """
    Sets the grid point count and grid size for alignment operations.

    Parameters:
        count (List[int]): Number of grid points in [x, y] direction. Must contain exactly two integers.
        size (List[float]): Size of the grid in [width, height]. Must contain exactly two numbers.

    Returns:
        self: The instance of the InterfaceAligner class.

    Raises:
        ValueError: If count or size does not contain exactly two elements.
        TypeError: If elements in count or size are not numbers.
    """
    self.count = count
    self.size = size
    self.pattern = "Grid"
    return self

set_interface_anchors_at(positions, labels=None, scan_area_sizes=None)

Creates multiple custom interface anchors at specified positions.

Parameters:

Name Type Description Default
labels List[str]

List of labels for the measurement locations.

None
positions List[List[float]]

List of positions for the measurement locations, each position is [x, y].

required
scan_area_sizes List[List[float]]

List of scan area sizes for the measurement locations, each scan area size is [width, height]. Defaults to [10.0, 10.0] for each anchor.

None

Returns:

Name Type Description
self

The instance of the InterfaceAligner class.

Raises:

Type Description
ValueError

If the number of labels does not match the number of positions.

TypeError

If elements in labels, positions, or scan_area_sizes are not of the correct types.

Source code in npxpy/nodes/aligners.py
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
def set_interface_anchors_at(
    self,
    positions: List[List[float]],
    labels: List[str] = None,
    scan_area_sizes: List[List[float]] = None,
):
    """
    Creates multiple custom interface anchors at specified positions.

    Parameters:
        labels (List[str]): List of labels for the measurement locations.
        positions (List[List[float]]): List of positions for the measurement locations, each position is [x, y].
        scan_area_sizes (List[List[float]], optional): List of scan area sizes for the measurement locations,
                                                       each scan area size is [width, height]. Defaults to [10.0, 10.0]
                                                       for each anchor.

    Returns:
        self: The instance of the InterfaceAligner class.

    Raises:
        ValueError: If the number of labels does not match the number of positions.
        TypeError: If elements in labels, positions, or scan_area_sizes are not of the correct types.
    """
    if scan_area_sizes is None:
        scan_area_sizes = [[10.0, 10.0]] * len(positions)
    if labels is None:
        labels = [f"anchor_{i}" for i in range(len(positions))]
    for label, position, scan_area_size in zip(
        labels, positions, scan_area_sizes
    ):
        self.add_interface_anchor(position, label, scan_area_size)

    return self

to_dict()

Converts the current state of the object into a dictionary representation.

Returns:

Name Type Description
dict Dict

Dictionary representation of the current state of the object, including alignment anchors, grid settings, and signal properties.

Source code in npxpy/nodes/aligners.py
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
def to_dict(self) -> Dict:
    """
    Converts the current state of the object into a dictionary representation.

    Returns:
        dict: Dictionary representation of the current state of the object, including
              alignment anchors, grid settings, and signal properties.
    """
    node_dict = super().to_dict()
    if self.signal_type == "auto" or self.detector_type == "camera_legacy":
        node_dict["interface_finder_type"] = self.signal_type
    else:
        node_dict["interface_finder_type"] = (
            f"{self.signal_type}_{self.detector_type}"
        )
    node_dict["properties"] = {
        "signal_type": self.signal_type,
        "detector_type": self.detector_type,
    }
    node_dict["alignment_anchors"] = self.alignment_anchors
    node_dict["grid_point_count"] = self.count
    node_dict["grid_size"] = self.size
    node_dict["pattern"] = self.pattern
    node_dict["measure_tilt"] = self.measure_tilt
    node_dict["area_measurement"] = self.area_measurement
    node_dict["center_stage"] = self.center_stage
    node_dict["action_upon_failure"] = self.action_upon_failure
    node_dict["laser_power"] = self.laser_power
    node_dict["scan_area_res_factors"] = self.scan_area_res_factors
    node_dict["scan_z_sample_distance"] = self.scan_z_sample_distance
    node_dict["scan_z_sample_count"] = self.scan_z_sample_count
    return node_dict